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The convective terms in the energy equation are identically zero, so that the major- 
izing equation assumes the ~~icularly simple form 

(as + 2a - 8/S”) W + “/%I = 0 (3.6) 

For the existence of positive solutions of Eq. (3.6) it is necessary to consider a < a* = 
0.055. The value a* = 0.055 determines the radius of convergence of the series for 

the velocity and for its first two derivatives ; it is obvious that the radius can be increased, 
but at the expense of a refinement in the estimate for a*. 

Convergence of the 
tion of the identity 

expansion (3.3) can also be established through a direct verifica- 

Here u (r, a) is the exact solution of Eq. (3.2). 
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An integral inequality is obtained for the rate of fluid injection into the boundary 
layer of a streamlined surface. Separation takes place when this inequality is 

satisfied and the pressure gradient is nonnegative. In particular, separation occurs 

whenever the positive injection rate is constant, independently of the magnitude 
of that rate. The results obtained in [l] where it was shown that separation takes 

place at sufficiently high injection rates, are thus refined. 

1. We consider the system 
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in the domain Da (0 < x < a, 0 < y < m) with the conditions 

U I lip* =z 0, 2’ I fJ=o = ?‘o (4 If I y=o = 110 f?/) (1.2) 

II (1.9 Y) - U (CC) for ?! - ~v , uniformly with respect to 5, 

U2 (2) + 2p (x) = const. 

We assume that u. (~4) > 0 for y > 0, u. (0) = 0, uO’ (0) > 0, t(” (!j) - G (01 for Y - 
00; dp / dx and ?po (z) are continuously differentiable on to, a]; lsn (~4). UOf (?I), ~1~” (y) 

are bounded for 0 < y < 00 and satisfy Hijlder condition. We assume also that for small 
y the consistency condition 

is satisfied at the point (0. 0). 
It was shown in [l] that for some a > 1? a solution (u, ~1 of the problem (1.1),(1.2) 

exists in D, such that au I C&J 1 ll=o > 0. Let A be the upper bound of such a values. 
If A < CO, we say that boundary layer separation occurs and we call rS = A the separa- 

tion point. If A = w, we have flow without separation. 

By making the change of variables 

in the system (1.1X we reduce the latter to the Mises form 

I, 

When dp / ri’z E 0 * we obtain the well known filtration equation 

0.4) 

(1.5) 

Let us introduce the following notation : x 

1’ (0, .1.) = 
s 
’ m(t) dt 

0 

With the change of variables (1.3) the domain p), becomes G,,{O < x < fl,- I- (c) 5) < 

$ < ~71, and the boundary conditions (1.2) become 

u I,:, __i’ 10, x) - - 0, ” I.\. :;rJ -1 I(* o/q, u(r, g-r’(r) for 11 -t m 0.6) 
where 

1+0(*+ Un(?I) 

Definition. By a generalized solution of the problem (1.5). (1.6) we mean a func- 
tion u (z, 91, which is continuous, nonnegative, and bounded in G, , satisfies the condi- 
tions (1.6), and is such that : 

1) the generalized derivative 3~2 / 89 exists, is square integrable in any arbitrary 
finite domain, and is bounded in any arbitrary half-strip of the form {O < z < a, .h _ 
V (0, x) <It’ < #J for each 6; 

2) for each function f of C* (G,) such that f = 0 for % = - I’ (0, ZC), the fol- 
lowing inequality is satisfied for x .= fz, outside of some finite domain : 
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A proof was given in [2] of the existence of a generalized solution of the first bound- 
ary-value problem for Eq. (1.5) in the domain {O < z < 0, 0 < 11) < Lo).’ The proof is 
carried out in an analogous way in the case of the domain G, . Just as in [2] , it can 

also be proved that where the generalized solution it (.c, 11) of the probfem (I. 5) (1.6) 
is positive, u (.c, $) satisfies Eq. (1.5) in the ordinary sense, 

If the generalized solution u (r, I$) of the problem (1.5),(1.6) vanishes inside C,,. 
separation of the boundary layer occurs at the point r, < 0. In fact, if in D, a solution 
of the problem (1,1),(1.2) exists such that u > 0 in D, and at< / 8~],,,, ‘> 0, then a po- 

sitive solution u (s, 11) of the problem (I. 5). (1.6) exists in C,, , which satisfies Eq. (1.5) 
in the ordinary sense. 

2. Let us consider a Cauchy problem for the filtration equation (1.5) with the initial 
condition I( I YE” == u1 (q) (2.1) 

Definition . By a generalized solution of the problem (1.5). (2.1) in the strip 
Ir, { 0 < J <:I rl, - = < 9 < CC} we mean a continuous nonnegative function u fr, J’), 

bounded in JJ,: and satisfying the condition (2. l), and such that 
1) the generalized derivative 3~” / G$ exists, is square integrable in any arbitrary 

finite domain, and is bounded in the strip II,; 

2) for each f of Cr (II,,), j = o for s ‘y o , and outside of some finite domain the 

equality 
.’ aj 

i\ [ 
/ (11, I;‘) I:, (I!) di; 0 

is satisfied. iin 
z 

,, -. + <; $1 d.,,cl$ + ; 

-Ax 

The existence of a generalized solution u (z, 11) of the problem (1.5). (2.1) was proved 
in [Z] under the assumption that u1 (11‘) is contunuous, 6 4 11~ (3) < MO3 and the function 
t(r2 (9) satisfies Lipschitz condition. Some properties of the function (1 (I, 11) were estab- 

lished in [3]. In particular, in Lemma 1 of [3] it was shown that if 11, (9) = 0 for %I - 
1 < Ijl ; 4 0 $_ 1, I > 0,then u (I, $“) = 0 for 0 < 1: < x0, where zu > 0 is determined 

from the relation 12 - = .1/n = sup 14, (II’) 
ti\ 1’0 (2.2) 

In the sequel, u1 (11) has the special form 

The function ,i1 (q) defined in this way is continuous, bounded, and l(ri ($1 satisfies Lip- 
schitz condition, 

Let II (z, Q) be a generalized solution of the Cauchy problem (1.5), (2.3). By Theo- 
rem 21 of 121, for each :Q, > 0 there exists $* (~0) < 0 such that u (x0, 9) = 0 for 
J‘ .< 1! ,* (~~1. As was proved in [Z, 31, the curve &Jr) divides the halfplane {I > 0) into 
two parts: one to the left of the curve, where u (2, I$) = 0 and the other to the right of 
it, where u (x, $) > 0. In [3] it was also proved that $* (x) is a continuous nonincreas- 

ing function. We now establish yet another property of the curve q* (x). 

Lemma. Let M, = SUP u1 @t?). Then ta (4 >, - y ti~icl~,~. 
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Proof. For each 1 > 0 , we have u1 ($) = 0 for - 21 < $ < 0. Therefore, accor- 
ding to Lemma 1 of [3], u (z, - I) = 0 for x< 20, where T” is determined from Eq. 
(2.2). Hence u (x, ‘li)) = 0 for 9 < - l/w and, consequently, 

** (z) > - J&z% (2.4) 

3. Let u (2, $) be a generalized solution of the Cauchy problem (1.5). (2.3) and 
let Q be a generalized solution of the first boundary-value problem (1.5). (1.6). Since 
u (0, 4: )= 111, ((1, 1;‘) for $ >> 0, u (2, $) > 0 for z > 0, and u,_+__~,~, Xj = 0, it then 
follows from the maximum principle that u (5, 9) > ut, (x, $) in G, (0 < IU < (I, - 

I7 (0, x) < dj <@=I for all 0 > (I. Consequently, if u (rO, qO) = 0, where (T”, I:,,) belongs 
to G,, it follows that "L (XO, 110) = 0 and, as pointed out above, the boundary layer sepa- 
ration takes place. 

Theorem. Let dp / dx 2 0. If x1 and x2 exist such that s1 < J! and 
52 

s --.._ 
I’,, (!) (ii > I/liv.,/,, (I.2 -- (1 !) (3.1) 

then boundary layer separation occurs at the point zs < r2 

Proof. First, we carry out the proof for the case dp 1 (1~ G 0. We assume that for 

all a > 0 a solution of the problem (1. l), (1.2) exists in D, such that u (x. ?I) > 0 for 
y > 0 and 8~ / $/lr!+ > O.Then a positive solution IQ (x, rp) of the problem (1.5) (1.6) 
exists in G, for n = I? . It is obvious that Ub (r, I‘) is a solution of Eq. (1.5) in the do- 

main H, {x1 < 2 < x2 = a, - 1’ (0, z) < Q < m) with the boundary conditions 

‘( I., Z-.V, = I’b (Sl, $), ” I,>,-_\. (5, .,) = 0 

By the maximum principle we note that sup+~“b (z. I’) ,<- IV,,. 

Let u1 (x, I$) denote the solution of the Cauchy problem for the Eq, (1.5) in the half- 
plane z >, r1 with the condition 

To the solution ,I! (2, 11) of the problem (1.5),(3.2) there corresponds a curve ~j.,’ (.I.) 
issuing from the point (.(, , --- 1 (0, 1)). In accord with the definition of the curve I;.~.’ (1.1 
wehave UI(~. , 11.) = o for 11. -< \I:,:’ (I). As in the lemma, we can show that 

s, 
* ll.cl (1) -7 \ *!o (1) cEt > - ~/(i\..ll” (.c -- J’I) 

0 

From this, using the inequality (3. l), we obtain 
s I .Y , .\’ L 

J’.+’ (I:) >, -~ \; L’,, (0 dl - l/tivh,, 1.12 -~~ XI) > - \’ z’,, (1) ti! - ‘f’ <.,,(I) (1~ 7 _ \ 7’ (/)fc’: 
0 0 .F, ci 

This inequality implies that the intersection of the domain III, with the set of points 
il: 11) in which I(! (J, $) = 0 is not empty. Since u1 (z, Q) 2 Us (z, 11) in II,, it follows 
that ~1, (T. 11) = cl in some subdomain of the domain U, and, as a result, we have bound- 
ary layer separation. 

Let us suppose now that dp / dl: > 0. Consider the problem (1,4),(1,6). As shown in 
Cl], a positive solution up (I, 4)) of the problem (1.4) (1.6) in the domain G, for some 
11 is obtained as the limit of solutions u pE (z, +) of the first boundary-value problem for 
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Eq. (1.4) with the boundary conditions 

” Ii :--v (0, I) = E f (S.‘j.l, II I . = g, (q-). I-_0 II (,r, I#) --- 1.; (.I) (3.3) ,>..h’ 

Here f, > 0, gz > 0; ,f, (J, 4:) - 0, g, ($) - 11~ (11) for I-‘-+(). In addition, i,. gc are 
smooth functionsand the consistency condition is satisfied at the point (0, 0). In the same 
way we obtain a positive solution Q, (z, I$) of the problem (1.5), (1.6) in G,, for some n 
as the limit of solutions ut,’ (2, I$) of the problem (1.5). (3.3) as e -+ 9. 

The function s = ut,’ - lcpE satisfies the linear equation 

Since s =m= 0 on the boundary of the domain G,,, dp / dx 2 0, LcT,e > 0, llpE > 0, and 
the second derivatives of the functions ubE and llpE are bounded with respect to $ , it then 

follows from the maximum principle that zip : r/i,” in G,. By a limiting transition we 

obtain the inequality flp (IC, 11) \ Q (z, $1 in G,, From this it follows that when dp / 

0~ > 0 boundary layer separation takes place in bil for ~1 == r? if separation takes place 
in D, for (L = z,, when dp / dz EZ 0. This completes the proof of the theorem. 

Corollary. If dp / dx > 0 and z‘~ (x) = m = coast > 0, boundary layer sepa- 

ration takes place in Do for some (I. 

In conclusion, the author thanks 0. A. Oleinik for interest in this paper. 
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We consider the system of thermal boundary layer equations for a two-dimen- 
sional steady forced-convective flow of an incompressible fluid. Our principal 
object of study being the equation for the temperature. We prove the single- 
valued solvability of the fundamental boundary-value problem for this equation. 

The problem of the single-valued solvability of the fundamental problems of 


